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Design of Waveguide E-Plane Filters
with All-Metal Inserts

YI-CHI SHIH, MEMBER, IEEE

Abstract —Waveguide E-plane filters with all-metal inserts are designed
by a procedure based on the reflection coefficients of axial inductive strips.
The scattering matrix, representing the junction in a bifurcated waveguide,
is calculated by a mode-matching method. The reflection coefficient for an
inductive strip is then obtained by cascading two scattering matrices
separated by a distance equal to the stripwidth. The design is valid up to
moderate bandwidths, except for the narrowband design at the higher
waveguide frequency range, where both the center frequency and the
bandwidth are inaccurate. Possible sources of error are studied and a
method minimizing the error is proposed.

I. INTRODUCTION

AVEGUIDE E-plane filters with all-metal inserts

(Fig. 1) were originally proposed. as low-cost mass-
producible circuits for microwave frequencies (1], [2]. More
recently, they have been designed for millimeter-wave ap-
plications through computer-optimization routines based
on: accurate analyses [3], [4]. The E-plane circuit is devel-
oped on a metal sheet by photo-etching, pressing, or
stamping. The widths of the slot patterns on the metal
sheet are equal to the waveguide height; thus, after assem-
bly, the structure consists of several resonators separated
by axial inductive strips. Because dielectric losses are ab-
sent, the structure has a high transmission Q factor and is
suitable for narrow-band high-Q applications.
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In computer-aided designs [3], [4], the optimization pro-
gram finetunes the filter circuit to make the filter perfor-
mance satisfy a set of specifications. This feature is desir-
able in millimeter-wave applications. because physically
finetuning a circuit of small size is a difficult task. With the
aid of the optimization program, human effort is mini-
mized in the process of design. The drawback is, however,
the expensive computer resources required for each design.
Compared with computer ~optimization, the network
synthesis procedures described in [1] and [2] require only
minimum computer time to design a filter. In [1], the
procedure is based on a low-pass prototype, and therefore
gives good results for narrowband design only. In [2), the
procedure is based on a distributed prototype and can be
used up to a relatively wide bandwidth; it requires, how-
ever, several iterations to complete a design. Unlike the
optimization program, which is based on an accurate anal-
ysis, the synthesis procedure involves some approxima-
tions. Although the design examples given in {1] and [2]
have been shown to be valid, there is no guarantee that
other designs will be valid. It is, therefore, the purpose of
this paper to introduce a design procedure with which one
can design an E-plane filter up to moderate bandwidth

~and still have confidence in the résult. -

The design procedure, based on a distributed step-
impedance filter prototype, is a modified version of that
described by Levy {5] for design of direct-coupled-cavity
filters. For a given set of filter specifications, the junction
reflection coefficients at the discontinuities are calculated

0018-9480,/84 /0700-0695%$01.00 ©1984 IEEE



696
T
b
4|l
A0 L0 e L ¥ Ol
TZ.‘/ 3
s
Iz
=2 72
Fig. 1. Geometry of a two-cavity E-plane filter with all-metal inserts.

by explicit formulas; suitable physical junctions that can
provide the required reflection coefficients are then chosen
and placed at adequate locations to form a filter. The filter
performance is approximately predicted by a single for-
mula. In the E-plane filter, the discontinuities are the axial
inductive strips. To simplify the process of constructing a
filter, we have calculated with a mode-matching method
the reflection coefficient of the strip as functions of
frequency and stripwidth. The results are collected in
several figures in a convenient form for the design.

The range of validity of the design is studied by compar-
ing the predicted filter performances to the performances
obtained by an accurate computer simulation. Good agree-
ment is found between them for filters up to moderate
bandwidth, except for narrow-band filters designed at the
higher waveguide frequency range. Compared with the
prediction (by approximation), the simulated result (by
accurate analysis) has a lower center frequency, a narrower
bandwidth, and a smaller passband ripple. The discrepancy
is due to the inaccurate approximation of a wide strip by a
lumped reactance and the neglect of the higher order mode
coupling between the strips in the design procedure. The
problem is serious, but it can be reduced by simply increas-
ing the thickness of the strip or stepping the waveguide
sidewalls.

II. DESIGN PROCEDURE

The prototype filter used in this design is the half-wave
step-impedance filter as shown in Fig. 2(a). It is a distrib-
uted filter consisting of a cascade of » line elements; each
element corresponds to a resonator in the conventional
filter design. The elements, having characteristic im-
pedances Z, (r =1,2,---, n), are assumed to have an equal
length of I =A,, /2, where A is the guide wavelength of
the line at the center frequency. The electrical response of
this transmission-line structure depends upon the im-
pedances of the unit elements. For electromagnetic waves
propagating along the line, the impedance differences be-
tween the unit elements yield reflected waves which, after
appropriate arrangement, will cancel each other at desired
frequencies. If, however, a uniform waveguide is used to
implement the circuit, all the unit elements are of the same
impedance; the necessary wave reflections must be pro-
duced by inserting some sort of discontinuities between the
unit elements. Fig. 2(b) and (¢) shows two such examples
where impedance inverters and scattering matrices are in-
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Filter prototypes. (a) Half-wave step-impedance filter, (b) im-
pedance inverter network, and (¢) scattering matrix network.

Fg. 2.

serted as the discontinuities; the unit elements are assumed
to have unit impedance. All three circuits will have the
same transmission characteristics as long as the following

equations hold:
Kr—l,r=VZr/Zr~1 (1)

K, -1
r—1,r (2)
I<r2—1,r+1

where K is the impedance value of the inverter and S;; the
reflection component in the scattering matrix.

For the prototype filter, an optimum equiripple band-
pass response! occurs around # = 7 when the transmitted
power

(Su)r~1‘,r=

— 1
2=
15, ” hsz( Smg) (3)
where
0 = W}\gO/Ag (4)
and

T,(x)=cosh(ncosh™! x) (5)

is the nth-degree Chebyshev polynomial of the first kind.
Alpha («) defines the passband bandwidth and % defines
the passband ripple level.

The network that gives the transfer characteristics in (3)
may be obtained by the exact synthesis described in [6].
However, for high-Q narrowband filters, the synthesis pro-
cedure suffers from numerical difficulties in reducing the
polynomial functions; sophisticated transformation is often
required to obtain accurate results. To avoid this problem,
we apply the explicit formulas derived by Rhodes [7] for
the element values

K,,,1=M1+(sin[f;,,’—’]/y)2/\/zz s

forr=0,1,---,n

(6)
with

(7)

o1 ~11]
y—smh[nsmh 7

L Qur discusston is restricted to the equirtpple case; a similar discussion
can be applied to the maximally flat case.
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and
=1, forr=0and n+1
[ @r-1)a [ [T
_ZSIH[T « y2+s1n2[—n—]
ya 4y .[(2r+1)7r]
sin | ——=——
Zr, L 2n
24 2 ("l)'”]
+y + sin [ 7
. [(2}*—3)77] ’
sin | ~————
2n ] ,

(3)

Equations (6) and (8) omit the higher order power terms in
a, and therefore, are only valid up to moderate band-
widths. ‘

In the above discussion, the discontinuities are assumed
to be frequency-independent. This assumption is hardly
true in practice, especially in waveguide applications. A
waveguide discontinuity can usually be represented by a
lumped reactive clement. For instance, an inductive iris
may be represented by a lumped inductor and, for the
present case, the axial inductive strip may also be rep-
resented by a lumped inductor with appropriate reference

forr=1,2,---,n.

planes. The lumped element representation implies that the -

characteristics of the discontinuity is frequency-dependent
and is approximately a linear dependency. The frequency-
dependent behavior of the discontinuity has significant
effects on the filter performances. In an earlier paper [5],
Levy has studied in detail the reactance-coupled filters and
concluded that the response in (3) should be modified as

! (9)

St = -
1Sl 1+h2T2(7rsm0)
"\ fa
to take into account the frequency dependence of the
discontinuities. Equation (9) accurately predicts the re-
sponse of reactance-coupled filters up to mod\erate band-
widths. Based on this expression, a design procedure is as
follows.

To design a filter, one is normally given the passband
ripple, the stopband attenuation, and the two passband
edge frequencies.

The design procedure is as follows:

1) The corresponding guide wavelgngths A, and A,
are calculated at the bandedge frequencies. From A
and A,,, the parameters a and A, (and therefore,
the center frequency f,) are determined by the follow-
ing equation:

A TA
1 . 0
Mg TR0

Ao Mg

A aTA
g2 . g0
X Sin X

=Aq.

(10)

20 g2

2) If the passband ripple is given as a maximum in-
sertion loss x dB. the parameter 4 is determined by

h=y100™ -1 (11)
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Fig. 3. Relationship between the E-plane structure and its scattering
matrix network representations. (a) The E-plane structure, (b) the
network representation with reference planes at R, and (c) the corre-
sponding prototype network representation with reference planes at R’.

If it is given as a maximum VSWR, then
VSWR -1

h=— 12

2VVSWR (12)

3) With the aid of (9), a value of n, the number of unit
elements in the filter, will be decided by the stopband
attenuation specification.

4) With the parameters «, &, and #, one can obtain the
junction reflection coefficient for each discontinuity
by the application of (2) and (6)—(8).

We now have the problem of converting these electrical
parameters into physical sizes of the E-plane structure. To
do this, we consider the scattering matrix network rep-
resentation of the E-plane structure in Fig. 3. For a lossless
junction, the S matrix is unitary and reciprocal, Therefore,
the S’ matrix is uniquely determined by knowing the mag-
nitude and phase of one of its elements, e.g., the reflection
coefficient S;;. In the next section, we will analyze the
axial strip of given dimensions to obtain the reflection
coefficient; or, inversely, we can determine the dimensions
of a strip for a given reflection coefficient. In the numerical
calculations, we define the reference planes to be the
planes at the edges of the strip. With this particular choice
of the reference planes, the resulting reflection coefficient
for the axial indpctive strip has a phase angle ¢ with a
value between 7/2 and 7. In the prototype, however, we
expect the junction reflection coefficients to be real, i.e.,
the phase angle is either 0 or «# (in this case, 7). To
compensate for the phase difference, we have to move the
reference planes toward the strip for an electrical length

Y=(7m—-9)/2. (13)
The design procedure is completed therefore by adding the
following two sieps: ‘

5) For the required reflection level in Step 4, the strip
width of cach junction is determined from the data
provided by a numerical analysis at the center
frequency, f;.

6) The corresponding phase angles for the strips are
obtained, from which the resonator lengths (the sep-



698

arations between the strips) are determined, as shown
in Fig. 3, by

2er/>‘g0 = Or,= (‘br—l,r + ¢r,r+1)/2 (14)

where /, is the physical length, and 8, the electrical
length of the rth resonator.

III. REFLECTION COEFFICIENT OF THE
INDUCTIVE STRIP

In this section, the problem of an axial inductive strip in
a rectangular waveguide is analyzed. The strip is assumed
to be located at the center of the guide to reduce the
excitation of the even-order modes, and the structure is
assumed to be lossless. The reflection coefficients of the
inductive strips are calculated and plotted in a convenient
form for use with the above design procedure.

Basically, the analysis consists of two parts. Part one
deals with a scattering problem in a waveguide bifurcated
by a septum of finite thickness (see Fig. 4(a)). A mode-
matching method [8] is used to obtain the scattering matrix
for the isolated junction. In the second part, two junctions,
as in part one, are joined back-to-back to form a finite-
width strip, as shown in Fig. 5(a). The overall scattering
matrix of the composite structure is obtained by applying a
network combination in terms of the generalized scattering
matrix. The process takes into account the interaction
between junctions by not only the fundamental mode but
also all the higher order modes.

A. Bifurcated Waveguide Junction

Consider the bifurcated waveguide in Fig. 4(a), where
the septum is located at the center along the E-plane.
Because of the symmetry, we can place a magnetic wall at
the center along the z-axis and consider only one half of
the structure, as shown in Fig. 4(b). The probleni becomes
a transverse step junction between rectangular waveguides
of different widths, a and c. For TE  fields incident from
both guides, the total fields in each region are composed of
the incident fields and the scattered fields due to the
Junction. The boundary-value problem is solved by first
expanding the total fields in terms of the TE normal modes
and then matching the tangential components of the fields
at the junction. The amplitudes of the normal modes are
conveniently represented by the elements of column vec-
tors as shown in Fig. 4(b), where (¢*,¢" ) and (b*, b™ ) are
the amplitude vectors of the incident and scattered fields in
region I and 1I, respectively. The continuity condition on
the tangential components of the electric and magnetic
fields is then applied across the aperture (z=0). The
resulting equations, with the scattered field amplitudes as
unknowns, are rearranged into the form shown in Fig. 4(c).
The final solution is the scattering matrix S containing the
four elements given by

Sy=[Y+HTY,H]| 'Y, - HTY,H]| (152)
Sy=2[Y,+ H'Y,H| 'HTY,=[I~8,,|HT (15b)
Sp=2[HY;'HTY,+ 1| 'H=H[I+S5),] (15¢)
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Fig. 4. (a) Junction of waveguide bifurcation, (b) amplitude vector
representation for incident and scattered fields, and (c) the generalized
scattering parameters.

dJunchion A Junction B

2 =0 z=0D
| I
| |
] t
| |
| o !
t !
(2) LA SR——
1 |
| |
| |
T T
I 1
N N
// AN // \\
e N e N

i

(©

| i
| i}
| |
I l
| |
| |
| !
R R

Fig. 5. (a) A septum of width D, (b) scattering network representation,
and (c) the composite scattering matrix after network combination.

Sy=[HY;'HTY, + 1] [HY; 'HTY,~ 1| = — HS, HT
(15d)

where I is the identity matrix; ¥; and ¥, are diagonal
matrices whose diagonal elements are the wave admit-
tances of the corresponding normal modes, defined by

yln
Y nn)y=-—-—
il ) Jwhy
Y2n
Y,(n,n)=- , n=1,2,--- 16
2(nm) =2 (16)

with

2n—1)xw
Y1in = vk3 - "’2.“060 s k,= (Z_a)*

nw\? 5
Yon = (75) — WikgEy

(17)

where w = 27f is the angular frequency; u, and ¢, are the
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permeability and permittivity of the free space. Matrix H
and its transpose H7 are the transformation matrices with
the elements defined by

2 k,cosk d
H(m,n)=H"(n,m)=(-1)"—=— 2—"—
vac Yim =Y

m=12---, n=1,2,---. (18)

The scattering parameters Sj;, Si,, Sy, and S,, are
matrices containing the scattering characteristics of the
fundamental mode, as well as the higher order evanescent
modes. ~

The matrices in (15) are of infinite dimension and the
expressions are mathematically exact. However, in practi-
cal computations, the matrix size must be truncated, i.e.,
only a finite number of normal modes can be considered in
each region. Let the number of normal modes retained in
regions 1 and IT be P and Q, respectively. Then, the
dimensions of the matrices Y;, Y,, H, H”, Si1, Siz» Sa1»
and S,, are, respectively, (P X P), (@ X 0), (@ X P), (P X
P), (PXQ), (QXP), and (Q X Q). The ratio between P
and Q is maintained as close as possible to be

a
c

P

0° (19)
to avoid the relative convergence problem [8]. The value of
P is increased until a satisfactory result is obtained. For
the cases of our interest, a value of P = 30 has been found
to yield results better than 0.1 percent.

B. Finite-Width Strip

With the knowledge of the scattering parameters for a
single junction, the overall composite scattering matrix can
be obtained by a network combination in terms of the
generalized scattering matrices, as shown in Fig. 5. Let S,
and S, represent the scattering matrices for the isolated
junctions 4 and B, respectively. From (15), we obtain the
element values for both matrices. Since the characteristics
of these two junctions are essentially the same except for
the opposite orientation, we have

Sa1=Spn = Su

Sa2 = Sp21 = Sz
Sa21=Sp2 = Su
(20)

Notice that, for the two-port networks, port 1 is defined to
be the port on the left-hand side and port 2 on the
right-hand side. We now define the 7" matrix

T=[(I) %1 (1)

where I and 0 are the identity matrix and the zero matrix,
respectively, and the element matrix T, represents the wave
propagating (for propagating modes) or attenuating (for
evanescent modes) for a distance of D in guide region 1.
T, is a diagonal matrix whose diagonal elements are

Sun = Sbu =Sn.

]wz(n’n)zef')’znb’ n=1’2’.... (21&)
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Fig. 6. Magnitude and phase of the reflection coefficient for inductive
strips of thickness ¢ = 0.

The combination of matrices S,, 7, and S, results in the
composite scattering matrix S for the strip of length D,
with the reference planes located at z=0and z=D. Asa
result, the expression for the reflection coefficient is

' §11 =S8+ S12T2S22[I - TzSzszSzz]ﬂTzSzr (22)

Of course, Sy; is still a matrix. We are only interested in
the first element Sy;(1,1), which is the fundamental reflec-
tion coefficient due to a fundamental incident field.

C. Reflection Coefficients

Based on the above analysis, we can calculate the reflec-
tion coefficient of an axial strip for any given dimensions.
In the design, however, we need to determine the dimen-
sions of the inductive strips for given reflection coeffi-
cients. For this purpose, we have tabulated many sets of
data relating the strip dimensions to the reflection coeffi-
cient. Due to the space limitation, we only present the data
for direct application to the Ka-band design. For other
frequency ranges, however, the data can still be applied
after appropriate scaling in dimensions.

In the calculations, the strip thicknesses are chosen to be
t=0,1, 2, 5, and 50 mils, and the results are plotted in
Figs. 6-10. Both the magnitude and phase of the reflection
coefficient are presented as functions of strip width D for
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frequencies running from 26 to 40 GHz in 2-GHz steps. A

logarithmic scale is used for D to increase the reading’s

accuracy for small values of D.

1V. DiscussioN

The range of validity for the E-plane filter design is
limited by two factors. One factor is the dimensional
tolerance that is required for reliable and reproducible
design. The other factor is the applicable range of the
design procedure because of the approximations made in
the derivation. :

In the present prototype circuit, the reflection coeffi-
-cients of the discontinuities are symmetrically distributed,
with the outermost junctions having the smallest reflection

coefficient. The resulting filter design is therefore a sym-

metrical structure with the outermost strips the narrowest
strip. With other design parameters fixed, these strips
become narrower as the design bandwidth increases. A
maximum available bandwidth is reached when the nar-
rowest strip reaches .a tolerable minimum value. If we
choose the minimum value to be 0.1 mm ( =4 mils), the
maximum available bandwidth is calculated and plotted in
Fig. 11 as a function of frequency for four passband ripple
levels. The number of cavities in the filter # is varied as a

strips of thickness ¢ = 2 mils.

parameter. In the calculations, the bandwidth is defined by

BW=(f,— f)/f (23)

where f; and f, are the bandedge frequencies, and fo is
the center frequency. From the figures, it is noticed that
the maximum bandwidth increases with the frequency and,
at any frequency, a wider bandwidth can be obtained by
increasing the passband ripple level or the cavity number
n. The bandwidth increases steadily with the increasing
passband ripple level. The increase of n beyond n =35,
however, has no significant improvement in bandwidth.
The results in Fig. 11 are calculated with a zero-thickness
strip. For a thick strip, the maximum available bandwidth
is reduced.

The design procedure is approximate because of the
omission of the higher order « terms in (6), the approxima-
tion of the axial strip by a lumped inductor, and the
neglect of the higher order mode coupling between the
strips. By comparing to the exact synthesis [6], (6) has been
found to yield reflection coefficient values, within the
limited maximum bandwidth described above, accurate
enough to have no effect on the filter performance. The
validity of the design procedure and the filter performance
predicted by (9) is mainly dependent on the other two
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Fig. 9. Magnitude and phase of the reflection coefficient for inductive
strips of thickness ¢ = 5 mils.

factors. It is impractical for us to verify the design proce-
dure by experimentally making and testing a large number
of filters; therefore, an analytical tool is developed by
extending the analysis to consider a filter structure consist-
ing of any number of inductive strips. The process, carried
out by cascading the scattering matrices that represent the
strips, is described in [9]. For a filter of given dimensions,
the complete analysis accurately simulates its transmission
characteristics, taking into account the correct behavior of
each strip and the higher order mode coupling between the
strips.

To test the validity of the procedure, hundreds of filters
have been designed in Ka band for n =2 to 7 elements
having passband ripple levels from 0.05 to 0.5 dB and
bandwidths ranging from 0.5 percent up to the maximum
available bandwidth. The computed response of each filter
by the analysis is then compared with the predicted re-
sponse given by (9). It is found that the bandedge frequen-
cies, the passband ripple level, and the stopband attenua-
tion are in good agreement, except in the cases when .the
design bandwidth is close to the maximum available band-
width and when the center frequency is above about
32 GHz. Two typical designs of relatively wide bandwidths
are shown in Fig. 12, where the solid curve is the result by

Fig. 10. Magnitude and phase of the reflection coefficient for 1nduct1ve
strxps of thickness ¢ = 50 mils.

(9) and the dashed curve by the analysis. It is noticed that
the bandedge frequencies and the stopband attenuation are
in good agreement, except that the errors in the approxi-
mated design tend to produce a slightly higher ripple level
in practice.

From consideration of the many designs, there exists a
tendency that the discrepancy between the filter perfor-
mance obtained by (9) and by the analysis increases as the
design’ frequency increases. The discrepancy becomes sig-
nificant in narrowband designs above about 32 GHz. For
example, Fig. 13(a) shows a typical design centered at 38
GHz with 0.1-dB ripple level and 1-percent bandwidth.
The actual fiiter response (i.¢., the dashed curve computed
by the analysis), however, has a 0.7-percent bandwidth and
is centered at 37.88 GHz. The error occurs because of the
inaccurate approximation of the wide strip by a lumped
inductor and the higher order model couphng between the
strips.

We have assumed that in the prototype circuit, no
higher order mode could exist; in practice, however, an
infinite number of higher order modes exist, in addition to
the fundamental mode. Although they do not propagate -
(ie., they are evanescent), significant electrical coupling
could occur when two strips are “electrically” close. When
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Fig. 11.

the operating frequency is low, the higher order modes
attenuate very rapidly and, therefore, the separation be-
tween the strips, approximately equal to one-half of the
guide wavelength, is considered electrically very far. As the
frequency increases, the electrical distance between the
strips is effectively shortened by two main factors. First,
the higher order modes attenuate slower and extend their
influence to a farther distance. Second, as can be observed
from Figs. 6-10, the phase angle of the reflection coeffi-
cient decreases when the frequency increases. As a result,

[+

PASSBAND RIPPLE 010 dB

03 04
T T

02
T

MAXIMUM BANDWIDTH

00

240 280 280 300 320 340 360 380 400 420
FREQUENCY IN GHz

©

0B

PASSBAND RIPPLE 020 dB

o~ @ o

03
T

02
T

MAXIMUM BANDWIDTH

01
T

00

1 L L L L L 1 1

240 260 280 300 320 340 360 380 400 420
FREQUENCY IN GHz

(d

Maximum available bandwidth of E-plane filters with all-metal nserts

the physical and electrical separations between the strips in
the filter are shortened according to (14). With these com-
binations, the filter performance is significantly altered by
the higher order mode coupling as the design frequency
increases.

The effect due to the higher order mode coupling alone
can be demonstrated by using an analysis considering only
the fundamental mode in the resonator region. For the
same parameters in the previous example, the result is
shown in Fig. 13(b) in comparison with the prototype
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Fig. 12. Design examples of filters with relatively wide bandwidth.

T
3 32

response by (9). By comparing Fig. 13(a) with Fig. 13(b), it
is concluded that the higher order mode coupling is mainly
responsible for the shift in the center frequency. The
stopband attenuation at higher frequencies is also slightly
reduced, but essentially no effect on the bandwidth and
passband ripple level is observed. The error in bandwidth
is caused by the inaccurate approximation of the frequency
behavior for a wide axial strip by a lumped inductor. The
approximation gets worse as the strip becomes wider.
Unfortunately, the construction of the E-plane filters al-
ways requires relatively wide strips to produce large junc-
tion reflection coefficients. For narrow-band design, espe-
cially at higher frequencies, the strip could become so wide
that (9) no longer predicts accurate bandwidths. It predicts
bandwidths that are too wide. The example in Fig. 13 is
one such case—it contains two inductive strips as wide as
8.32 mm. For filters of wider bandwidth, this problem is
less serious because of the reduced strip width in the
design. For instance, if we refer to Fig. 12(b) for the
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Fig. 13. Design example of a narrow-band filter at 38 GHz. The pre-

dicted filter performance by (9) is compared with that by a complete

analysis (a), and with that by an analysis without considering the higher
order mode coupling (b).

24-percent bandwidth filter, the bandwidth is only reduced
by 1.6 percent in practice; the widest strip in the design is
1.28 mm.

Equation (9) will predict the bandwidth more accurately
if a correction factor is introduced similar to the one
derived in Appendix I of [10] and further discussed in [11].
This factor enables a correction between the frequency
dependence of a lumped inductive element as compared to
the quasi-distributed inductive element. In the present case,
however, the correction factor is a complicated function of
dimensions and frequency, and is not analytically tracta-
ble. Besides, the error in predicting the center frequency
still remains because of the higher order mode coupling.
Therefore, instead of providing the correction factor, we
discuss in the following two possible ways of alleviating the
problem.
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The error involved in the center frequency and the
bandwidth of the design at higher frequencies is a serious
problem for narrow-band E-plane filters. The key to the
solution is to minimize the stripwidths and maximize the
separations between the strips in a design. Studying the
results in Figs. 6-10, we have concluded that a simple
solution is to design with a thicker strip. For example,
suppose we are to choose a strip to produce a reflection
coefficient of magnitude 0.95 at 38 GHz. Using a 1-mil-
thick metal, the required stripwidth is 3.1 mm and the
associated phase angle of the reflection coefficient is 1.78;
while using a 50-mil-thick metal, the stripwidth is 0.68 mm
and the phase angle is 2.61. Therefore, if we redesign the
1-percent bandwidth filter at 38 GHz using 50-mil-thick
strips, the resulting structure has narrower strips and wider
separations as given in Fig. 14. Notice that the result given
by (9) (the solid curve) is now in good agreement with that
computed by the analysis.

Another possible method for alleviating the wide strips
and close spacings is to reduce the waveguide width in the
vicinity of the inductive strips in question. The reduced-
width waveguide has a higher cutoff frequency and a
longer guide wavelength at the same operating frequency.
Furthermore, for the same reflection coefficient, the re-
quired stripwidth becomes narrower as compared to the
original structure. As a result, narrow strips and adequate
spacings can be used in a design. The problem is, however,
that the effect of the step-wall discontinuity has to be
considered in order to obtain accurate results. This prob-
lem is being studied.

V. ConcLusioN

This paper presents a simple design procedure for E-
plane filters with all-metal inserts. With the aid of the
given information on the reflection coefficient of the induc-
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tive strip, one can design a filter using a hand calculator.
The equation in (9) predicts quite well the filter perfor-
mances up to a moderate bandwidth, except for the cases
of narrow-band filters designed at the higher waveguide
frequency range. In those filters, wide metal strips are
placed relatively close to each other. Therefore, the higher
order mode coupling between the strips and the inaccurate
approximation of the wide strips by lumped inductors
result in a considerable downward shift in the center
frequency and a reduction in the passband bandwidth.
Although no better model has been proposed that can fully
take into account these problems, we suggest the use of a
thicker metal strip for narrow-band design at higher fre-
quencies to reduce these effects.
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