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Design of Waveguide E-F’lane Filters
with All-Metal Inserts

YI-CHI SHIH, MEMBER, IEEE

Abstract —Waveguide E-plane filters with all-metal inserts are designed

by a procedure based on the reflection coefficients of axiat inductive strips.
‘Ile scattering matrix, representing the junction in a bifurcated waveguide,
is calculated by a mode-matching method. The reflection coefficient for an
inductive strip is then obtained by caseadhg two scattenug matrices

separated by a distance equal to the stripwidth. The design is valid up to

moderate bandwidths, except for the narrowband design at the higher

wavegnide frequency range, where both the center frequency and the
bandwidth are inaccurate. Possible sources of error are studied and a

method minimizing the error is proposed.

I. INTRODUCTION

w

AVEGUIDE E-plane filters with all-metal inserts

(Fig. 1) were originally proposed as low-cost mass-

producible circuits for microwave frequencies [1], [2], More

recently, they have been designed for millimeter-wave ap-

plications through computer-optimization routines based

on accurate analyses [3], [4], The E-plane circuit is devel-

oped on a metal sheet by photo-etching, pressing, or

stamping. The widths of the slot patterns on the metal

sheet are equal to the waveguide height; thus, after assem-

bly, the structure consists of several resonators separated

by axial inductive strips, Because dielectric losses are ab-

sent, the structure has a high transmission Q factor and is

suitable for narrow-band high-Q applications.
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In computer-aided designs [3], [4], the optimization pro-

gram finetunes the filter circuit to make the filter perfor-

mance satisfy a set of specifications. This feature is desir-

able in millimeter-wave applications because physically

finetuning a circuit of small size is a difficult task. With the

aid of the optimization program, human effort is mini-

mized in the process of design. The drawback is, however,

the expensive computer resources required for each design,

Compared with computer optimization, the network

synthesis procedures described in [1] and [2] require only

minimum computer time to design a filter. In [1], the

procedure is based on a low-pass prototype, and therefore

gives good results for narrowband design only. In [2,], the

procedure is based on a distributed prototype and can be

used up to a relatively wide bandwidth; it requires, how-

ever, several iterations to complete a design. Unlike the

optimization program, which is based on an accurate anal-

ysis, the synthesis procedure involves some approxima-

tions. Although the design examples given in [1] and [2]

have been shown to be valid, there is no guarantee that

other designs will be valid. It is, therefore, the purpose of

this paper to introduce a design procedure with which one

can design an E-plane filter up to moderate bandwidth

and still have confidence in the result.

The design procedure, based on a distributed step-
impedance filter prototype, is a modified version of that

described by Levy [5] for design of direct-coupled-cavity

filters. For a given set of filter specifications, the junction

reflection coefficients at the discontinuities are calculated
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Fig, 1. Geometry of a two-cavity E-plane falter with all-metaf inserts,

by explicit formulas; suitable physical junctions that can

provide the required reflection coefficients are then chosen

and placed at adequate locations to form a filter. The filter

performance is approximately predicted by a single for-

mula. In the E-plane filter, the discontinuities are the axial

inductive strips. To simplify the process of constructing a

filter, we have calculated with a mode-matching method

the reflection coefficient of the strip as functions of

frequency and stripwidth, The results are collected in

several figures in a convenient form for the design.

The range of validity of the design is studied by compar-

ing the predicted filter performances to the performances

obtained by an accurate computer simulation. Good agree-

ment is found between them for filters up to moderate

bandwidth, except for narrow-band filters designed at the

higher waveguide frequency range. Compared with the

prediction (by approximation), the simulated result (by

accurate analysis) has a lower center frequency, a narrower

bandwidth, and a smaller passband ripple. The discrepancy

is due to the inaccurate approximation of a wide strip by a

lumped reactance and the neglect of the higher order mode

coupling between the strips in the design procedure. The

problem is serious, but it can be reduced by simply increas-

ing the thickness of the strip or stepping the waveguide

sidewalls.

II. DESIGN PROCEDURE

The prototype filter used in this design is the half-wave

step-impedance filter as shown in Fig. 2(a), It is a distrib-

uted filter consisting of a cascade of n line elements; each

element corresponds to a resonator in the conventional

filter design. The elements, having characteristic im-

pedances Z, (r =1,2,. . . . n), are assumed to have an equal

length of 1 = AgO/2, where AgO is the guide wavelength of

the line at the center frequency. The electrical response of

this transmission-line structure depends upon the im-

pedances of the unit elements. For electromagnetic waves

propagating along the line, the impedance differences be-

tween the unit elements yield reflected waves which, after

appropriate arrangement, will cancel each other at desired

frequencies. If, however, a uniform waveguide is used to

implement the circuit, all the unit elements are of the same

impedance; the necessary wave reflections must be pro-

duced by inserting some sort of discontinuities between the

unit elements. Fig. 2(b) and (c) shows two such examples

where impedance inverters and scattering matrices are in-

(a)

1 Ko,l 1 ‘flz 1

11-=D= ““’”””””=D

(b)

T
0,1 ‘ 1,2

dll=ll=--=ll?’

(c)

Fig. 2. Falter prototypes. (a) Half-wave step-impedance filter, (b) im-
pedance inverter network, and (c) scattering matrix network.

serted as the discontinuities; the unit elements are assumed

to have unit impedance. All three circuits will have the

same transmission characteristics as long as the following

equations hold:

(1)

(2)

where K is the impedance value of the inverter and S1l the

reflection component in the scattering matrix.

For the prototype filter, an optimum equiripple band-

pass responsel occurs around t9 = w when the transmitted

power

where

o = l’rAgo/Ag (4)

and

T~(.x) = cosh(ncosh-’x) (5)

is the n th-degree Chebyshev polynomial of the first kind.

Alpha (a) defines the passband bandwidth and h defines

the passband ripple level.

The network that gives the transfer characteristics in (3)

may be obtained by the exact synthesis described in [6],

However, for high-Q narrowband filters, the synthesis pro-

cedure suffers from numerical difficulties in reducing the

polynomial functions; sophisticated transformation is often

required to obtain accurate results. To avoid this problem,
we apply the explicit formulas derived by Rhodes [7] for

the element values

for7=0,1,. ... n (6)

with

Y=sinh[+sinh-w
(7)

10ur dncusslon is restricted to the equinpple case; a similar discussion
can be applied to the maximally flat case.
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and

z;

=1, forr=Oandn+l

2sin[(2r?l~ J’z+sin’[:l.
ya

I4Y ‘in[(2rP1

! y’ + sin2 [(’?l
+ ‘in[(2r~:)T1

forr=l,2,. ... n. (8)

Equations (6) and (8) omit the higher order power terms in

a, and therefore, are only valid up to moderate band-

widths.

In the above discussion, the discontinuities are assumed

to be frequency-independent. This assumption is hardly

trpe in practice, especially in waveguide applications. A

waveguide discontinuity can usually be represented by a

lumped reactive element. For instance, an inductive iris

may be represented by a lumped inductor and, for the

present case, the axial inductive strip may also be rep-

resented by a lumped inductor with apprqyiate reference

planes. The lumped element representation implies that the

characteristics of the discontinuity is frequency-dependent

and is approximately a linear dependency. The frequency-

dependent behavior of the discontinuity has significant

effects on the filter performances. In an earlier paper [5],

Levy has studied in detail the reactance-coupled filters and

concluded that the response in (3) should be modified as

(9)

to take into account the frequency dependence of the

discontinuities. Equation (9) accurately predicts the re-

sponse of reactance-coupled filters u~ to mod~rate band-

widths. Based on this expression, a design procedure is as

follows.

To design a filter, one is normally given the passband

ripple, the stopband attenuation, and the two passband

edge frequencies.

The design procedure is as follows:

1) The corresponding guide wavelengths Agl and Ag2

are calculated at the bandedge frequencies. From A ~1

and Ag2, the parameters a and A.gO (and therefore,

the center frequency ~0) are determmed by the follow-

ing equation:

A f7Ago A@ 7TAgo
‘sin—=–—
A Agl Agosln~ = a“

(lo)
go

2) If the passband ripple is given as a maximum in-

sertion loss x dB, the parameter h is determined by

h=~-. (11)

(a)

(b)

(c)

; u; iui
‘,R I+ ‘.R A’

Fig. 3. Relationship between the E-plane structure and its scattering
matrix network representations. (a) The E-plane structure, (b) the
network represent~tion with reference planes at R, and (c) the corre-

sponding prototype network representation with reference planes at R’.

If it is given as a maximum VSWR, then

h= VSWR–l

2dm “
(12)

3)

4)

With the aid of (9), a value of n, the number of unit

elements in the filter, will be decided by the stopband

attenuation specification.

With the parameters a, h, and n, one can obtain the

junction reflection coefficient for each discontinuity

by the application of (2) and (6)-(8).

We now have the problem of converting these electrical

parameters into physical sizes of the E-plane structure. To

do this, we consider the scattering matrix network rep-

resentation of the E-plane structure in Fig. 3. For a losslcks

junction, the ~ matrix is unitary and reciprocal. The~efore,

the ~ matrix is uniquely determined by knowing the mag-

nitude and phase of one of its elements, e.g., the reflection

coefficient &. In the next section, we will analyze the

axial strip of given dimensions to obtain the reflection

coefficient; or, inversely, we can determine the dimensions

of a strip for a given reflection coefficient. In the numerical

calculations, wc define the reference planes to be the

planes at the edges of the strip. With this particular choice

of the reference planes, the resulting reflection coeffi~ient

for the axial indpctive strip has a phase angle o with a

value between w/2 and T. In the prototype, however, we

expect the junction reflection coefficients to be real, i.e.,

the phase angle is either O or m (in ths case, ~). To

compensate for the phase difference, we have to move the

reference planes toward the strip for an electrical length

$=(7r-@)/2. (13)

The design procedure is completed therefore by adding the

following two steps:

5)

6)

For the required reflection level in Step 4, the strip

width of each junction is determined from the data

provided by a numerical analysis at the center

frequency, ~O.

The corresponding phase angles for the strips are

obtained, from which the resonator lengths (the sep-



698 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES, VOL. MTT-323NO. 7, JULY 1984

arations between the strips) are determined, as shown
JUnclbm

1 Ekctm Wdl

in Fig. 3, lby
T

k“

2’n’lr/Ag~ = 0:= (+,-1,, + +,,,+1)/2 (14) z: --.: ---:ti<:”,”,

where 1, is the physical length, and 07’ the electrical

length of the r th resonator.

III. REFLECTION COEFFICIENT OF THE

INDUCTIVE STRIP

In this section, the problem of an axial inductive strip in

a rectangular waveguide is analyzed. The strip is assumed

to be located at the center of the guide to reduce the

excitation of the even-order modes, and the structure is

assumed to be lossless. The reflection coefficients of the

inductive strips are calculated and plotted in a convenient

form for use with the above design procedure.

Basically, the analysis consists of two parts. Part one

deals with a scattering problem in a waveguide bifurcated

by a septum of finite thickness (see Fig. 4(a)). A mode-

matching method [8] is used to obtain the scattering matrix

for the isolated junction. In the second part, two junctions,

as in part one, are joined back-to-back to form a finite-

width strip, as shown in Fig. 5(a). The overall scattering

matrix of the composite structure is obtained by applying a

network combination in terms of the generalized scattering

matrix. The process takes into account the interaction

between junctions by not only the fundamental mode but

also all the higher order modes.

A. Bifurcated Waveguide Junction

Consider the bifurcated waveguide in Fig. 4(a), where

the septum is located at the center along the E-plane.

Because of the symmetry, we can place a magnetic wall at

the center along the z-axis and consider only one half of

the structure, as shown in Fig. 4(b). The problem becomes

a transverse step junction between rectangular waveguides

of different widths, a and c, For TEnO fields incident from

both guides, the total fields in each region are composed of

the incident fields and the scattered fields due to the

junction. The boundary-value problem is solved by first

expanding the total fields in terms of the TE normal modes

and then matching the tangential components of the fields

at the junction. The amplitudes of the normal modes are

conveniently represented by the elements of column vec-

tors as shown in Fig. 4(b), where (g’, g- ) and (j+, ~- ) are

the amplitude vectors of the incident and scattered fields in

region I and II, respectively. The continuity condition on

the tangential components of the electric and magnetic

fields is then applied across the aperture (z= O). The

resulting equations, with the scattered field amplitudes as

unknowns, are rearranged into the form shown in Fig. 4(c).

The final solution is the scattering matrix S containing the

four elements given by

S22 = [Y2 + IFYIH] -1[Y2 – IFYIH] (15a)

s21=2[lj +H’YIH]-lFY1= [l– S22]W (15b)

s12=2[HY;’H~Y1 +l]-1H=H[I+s22] (15C)

L
I t:2d,

(

(a)

(b)

(c)

Fig. 4. (a) Junction of waveguide bifurcation, (b) amplitude vector
representation for incident and scattered fields, and (c) the generalized
scattering parameters.

J“ncfvnl & d.nctto. B
,=~ ,=0

1 1

1 1
, t

1 1

rr

(a) 1 ~ 1’

1 1

1 I

(b)

(c)

R R

Fig. 5. (a) A septum of width D, (b) scattering network representation,
and (c) the composite scattering matrix after network combination.

sll = [HyjlHTY1 + 1] ‘l[HYjlHTY1 – 1] = – HS22HT

(15d)

where 1 is the identity matrix; Y1 and Y2 are diagonal

matrices whose diagonal elements are the wave admit-

tances of the corresponding normal modes, defined by

Yl(n, n)=%
J@/Jo

Y2nY2(7r, n)=~ H=1,2, . . .
J(,d/.Lo ‘

with

(16)

(17)

where a = 2 nf is the angular frequency; PO and co are the
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permeability and permittivity of the free space. Matrix H

and its transpose HT are the transformation matrices with

the elements defined by

m=l,2,. ... rs=l,2, . . . . (18)

The scattering parameters Sll, S12, S21, and S22 are

matrices containing the scattering characteristics of the

fundamental mode, as well as the higher order evanescent

modes.

The matrices in (15) are of infinite dimension and the

expressions are mathematically exact. However, in practic-

al computations, the matrix size must be truncated, I.e.,

only a finite number of normal modes can be considered in

each region. Let the number of normal modes retained in

regions I and II be P and Q, respectively. Then, the

dimensions of the matrices Yl, Y2, H, HT, S1l, S12, S21,

and S22 are, respectively, (P X P), (Q X Q), (Q X P), (P X

P), (P x Q), (Q x P), and (Q x Q). The ratio between P

and Q’ is maintained as close as possible to be

Pa—.—
Qc

(19)

to avoid the relative convergence problem [8]. The value of

P is increased until a satisfactory result is obtained. For

the cases of our interest, a value of P = 30 has been found

to yield results better than 0.1 percent.

B. Finite-Width Strip

With the knowledge of the scattering parameters for a

single junction, the overall composite scattering matrix can

be obtained by a network combination in terms of the

generalized “scattering matrices, as shown in Fig. 5. Let Sa

and S~ represent the scattering matrices for the isolated

junctions A and B, respectively. From (15), we obtain the

element values for both matrices. Since the characteristics

of these two junctions are essentially the same except for

the opposite orientation, we have

‘all = ‘b22 = ’11

&2= sb~~ = &2

sa21 = sb12 = s~~

Sazz = s~~~= s~~. (20)

Notice that, for the two-port networks, port 1 is defined to

be the port on the left-hand side and port 2 on the

right-hand side. We now define the T matrix

[1IO‘= O T2
(21)

where 1 and O are the identity matrix and the zero matrix,

respectively, and the element matrix T2 represents the wave

propagating (for propagating modes) or attenuating (for

evanescent modes) for a distance of D in guide region II.

T2 is a diagonal matrix whose diagonal elements are

T.(n, n)=e-y2nD, n=l,2, ”””. (21a)

,,, ,. ,“

sTRIP W! DII+ O (m,r I

(a)

.. . ,.
5TFlf’ wi2T. [: ‘..1

(b)

Fig. 6. Magnitude and phase of the reflection coefficient for inductive
strips of thickness t = 0.

The combination of matrices J., T, and S~ results in the

composite scattering matrix S for the strip of length D,

with the reference planes located at z = O and z = D. As a

result, the expression for the reflection coefficient is

> & = Sll -tS12T2S22[I – T2S22T2S22] ‘1 T2S21. (22)

Of course, ~11 is still a matrix, We are only interested in

the first element ~11(1, 1), which is the fundamental reflec-

tion coefficient due to a fundamental incident field.

C. Reflection Coefficients

Based on the above analysis, we can calculate the reflec-

tion coefficient of an axial strip for any given dimensions.

In the design, however, we need to determine the dimen-

sions of the inductive strips for given reflection coeffi-

cients. For this purpose, we have tabulated many sets of

data relating the strip dimensions to the reflection coeffi-

cient. Due to the space limitation, we only present the data

for direct application to the Ka-band design. For other

frequency ranges, however, the data can still be applied

after appropriate scaling in dimensions.

In the calculations, the strip thicknesses are chosen to be

1 = O, 1, 2, 5, and 50 roils, and the results are plotte~. in

Figs. 6–10. Both the magnitude and phase of the reflection

coefficient are presented as” functions of striu width D for
A.. . .,



700 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. Nm~-32, NO. 7, JULY 1984

,. ,“

5-R:F wl?Td D [m,. ]
lU

(a)

1o“’ 10’ 1’0’
STRIP 1413TH D [..1

(b)

Fig. 7. Magnitude and phase of the reflection coefficient for inductive
strips of thickness t= 1roil.

frequencies running from 26 to 40 GHz in 2-GHz steps. A

logarithmic scale k used for D to increase the reading’s

accuracy for small values of D.

IV. DISCUSSION

The range of validity for the E-plane filter design is

litited by two factors. One factor is the dimensional

tolerance that is required for reliable and reproducible

design. The other factor is the applicable range of the

design procedttre because of the approximations made in

the derivation.

In the present prototype circuit, the reflection coeffi-

cients of the discontinuities are symmetrically distributed,

with the outermost junctions having the smallest reflection

coefficient. The resulting filter design is therefore a sym-

metrical structure with the outermost strips the narrowest

strip. With other design parameters fixed, these strips

become narrower as the design bandwidth increases. A

maximum available bandwidth is reached when the nar-

rowest strip reaches a tolerable minimum value. If we

choose the minimum value to be 0.1 mm ( = 4 roils), the

maximum available bandwidth is calculated and plotted in

Fig. 11 as a function of frequency for four passband ripple

levels. The number of cavities in the filter n is varied as a

, ., .
(b)

Fig. 8. Magnitude and phase of the reflection coefficient for inductive
strips of thickness t = 2 roils,

parameter. In the calculations, the bandwidth is defined by

~J7’=(f2-fJ/f(o (23)

where fl and f2 are the bandedge frequencies, and f. is

the center frequency. From the figures, it is noticed that

the maximum bandwidth increases with the frequency and,

at any frequency, a wider bandwidth can be obtained by

increasing the passband ripple level or the cavity number

n. The bandwidth increases steadily with the increasing

passband ripple level. The increase of n beyond n =5,

however, has no significant improvement in bandwidth.

The results in Fig. 11 are calculated with a zero-thickness

strip. For a thick strip, the maximum available bandwidth

is reduced.

The design procedure is approximate because of the

omission of the higher order a terms in (6), the approxima-

tion of the axial strip by a lumped inductor, and the

neglect of the higher order mode coupling between the

strips. By comparing to the exact synthesis [6], (6) has been

found to yield reflection coefficient values, within the

limited maximum bandwidth described above, accurate

enough to have no effect on the filter performance. The

validity of the design procedure and the filter performance

predicted by (9) is mainly dependent on the other two
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STRIP WIDTH O [mm,)

(b)

Fig. 9. Magnitude and phase of the reflection coefficient for inductive
strips of thickness t= 5 roils.

factors. It is impractical for us to verify the design proce-

dure by experimentally making and testing a large number

of filters; therefore, an analytical tool is developed by

extending the analysis to consider a filter structure consist-

ing of any number of inductive strips. The process, carried

out by cascading the scattering matrices that represent the

strips, is described in [9]. For a filter of given dimensions,

the complete analysis accurately simulates its transmission

characteristics, taking into account the correct behavior of

each strip and the higher order mode coupling between the

strips.

To test the validity of the procedure, hundreds of filters

have been designed in Ka band for n = 2 to 7 elements

having passband ripple levels from 0.05 to 0.5 dB and

bandwidths ranging from 0.5 percent up to the maximum

available bandwidth. The computed response of each filter

by the analysis is then compared with the predicted re-

sponse given by (9). It is found that the bandedge frequen-

cies, the passband ripple level, and the stopband attenua-

tion are in good agreement, except in the cases when the

design bandwidth is close to the maximum available band-

width and when the center frequency is above about

32 GHz. Two typical designs of relatively wide bandwidths

are shown in Fig. 12, where the solid curve is the result by

:.

m
N

%
o
“1

—m

m’
L
D

~:

$.
y

.

o’
STRIP WIOTH O [..1

(b)

Fig. 10. Maguitude and phase of the reflection coefficient for inductive
strips of thickness t= 50 roils,

(9) and the dashed curve’by the analysis. It is noticed that

the bandedge frequencies and the stopband attenuation are

in good agreement, except that the errors in the approxi-

mated design tend to produce a slightly higher ripple level

in practice.

From consideration of the many designs, there exists a

tendency that the discrepancy between the filter perfor-

mance obtained by (9) and by the analysis increases as the

design frequency increases. The discrepancy becomes sig-

nificant in narrowband designs above about 32 GHz. For

example, Fig. 13(a) shows a typical design centered at 38

GHz with O.1-dB ripple level and l-percent bandwidth.

The actual filter response (i.e., the dashed curve computed

by the analysis), however, has a 0,7-percent bandwidth and

is centered at 37,88 GHz. The error occurs because of the

inaccurate approximation of the wide strip by a lumped

inductor and the higher order model coupling between the

strips.

We have assumed that, in the prototype circuit, no

higher order mode could exist; in practice, however, an

infinite number of higher order modes exist, in addition to

the fundamental mode. Although they do not propagate
(i.e., they are evanescent), significant electrical coupling

could occur when two strips are “electrically” close. When
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Fig. 11, Maxrmum available bandwidth of E-plane filters with all-metal inserts

the operating frequency is low, the higher order modes

attenuate very rapidly and, therefore, the separation be-

tween the strips, approximately equal to one-half of the

guide wavelength, is considered electrically very far. As the

frequency increases, the electrical distance between the

strips is effectively shortened by two main factors. First,

the higher order modes attenuate slower and extend their

influence to a farther distance. Second, as can be observed

from Figs. 6–10, the phase angle of the reflection coeffi-

cient decreases when the frequency increases. As a result,

the physical and electrical separations between the strips in

the filter are shortened according to (14). With these com-

binations, the filter performance is significantly altered by

the higher order mode coupling as the design frequency

increases.

The effect due to the higher order mode coupling alone

can be demonstrated by using an analysis considering only

the fundamental mode in the resonator region. For the

same parameters in the previous example, the result is

shown in Fig. 13(b) in comparison with the prototype
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Fig. 12. Design examples of filters with relatively wide bandwidth.

response by (9). By comparing Fig. 13(a) with Fig, 13(b), it

is concluded that the higher order mode coupling is mainly

responsible for the shift in the center frequency. The

stopband attenuation at higher frequencies is also slightly

reduced, but essentially no effect on the bandwidth and

passband ripple level is observed. The error in bandwidth

is caused by the inaccurate approximation of the frequency

behavior for a wide axial strip by a lumped inductor. The

approximation gets worse as the strip becomes wider.

Unfortunately, the construction of the ~-plane filters al-

ways requires relatively wide strips to produce large junc-

tion reflection coefficients, For narrow-band design, espe-

cially at higher frequencies, the strip could become so wide

that (9) no longer predicts accurate bandwidths. It predicts

bandwidths that are too wide. The example in Fig. 13 is

one such case—it contains two inductive strips as wide as

8.32 mm. For filters of wider bandwidth, this problem is

less serious because of the reduced strip width in the

design. For instance, if we refer to Fig. 12(b) for the
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Fig. 13. Design example of a narrow-band filter at 38 GHz. The pre-
dicted filter perfc,rmance by (9) is compared with that by a complete
anrdysis (a), and with that by an analysis $vithout considering the higher
order mode coupling (b).

24-percent bandwidth filter, the bandwidth is only reduced

by 1.6 percent in practice; the widest strip in the design is

1.28 mm.

Equation (9) will predict the bandwidth more accurately

if a correction factor is introduced similar to the one

derived in Appe:ndix I of [10] and further discussed in [11].

This factor enables a correction between the frequency

dependence of a lumped inductive element as compared to

the quasi-distributed inductive element. In the present case,

however, the correction factor is a complicated function of

dimensions and frequency, and is not analytically tracta-

ble. Besides, the error in predicting the center frequency

still remains because of the higher order mode coupling.

Therefore, “instead of providing the correction factor, we

discuss in the fcllowing two possible ways of alleviating the

problem.



704 IEEE TRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. MTT-32, NO. 7, JULY 1984

,,,
.. .. .,”

37 5 38.5

FREOUCN:Y 1N GHz

Fig. 14. Design example of a narrow-band filter at 38 GHz with a
50-mil-thick metaf insert.

The error involved in the center frequency and the

bandwidth of the design at higher frequencies is a serious

problem for narrow-band E-plane filters. The key to the

solution is to minimize the stripwidths and maximize the

separations between the strips in a design. Studying the

results in Figs. 6–10, we have concluded that a simple

solution is to design with a thicker strip. For example,

suppose we are to choose a strip to produce a reflection

coefficient of magnitude 0.95 at 38 GHz. Using a l-mil-

thick metal, the required stripwidth is 3.1 mm and the

associated phase angle of the reflection coefficient is 1.78;

while using a 50-mil-thick metal, the stripwidth is 0.68 mm

and the phase angle is 2.61. Therefore, if we redesign the

l-percent bandwidth filter at 38 GHz using 50-mil-thick

strips, the resulting structure has narrower strips and wider

separations as given in Fig. 14. Notice that the result given

by (9) (the solid curve) is’ now in good agreement with that

computed by the analysis.

Another possible method for alleviating the wide strips

and close spacings is to reduce the waveguide width in the

vicinity of the inductive strips in question. The reduced-

width waveguide has a higher cutoff frequency and a

longer guide wavelength at the same operating frequency.

Furthermore, for the same reflection coefficient, the re-

quired stripwidth becomes narrower as compared to the

original structure. As a result, narrow strips and adequate

spacings can be used in a design. The problem is, however,

tive strip, one can design a filter using a hand calculator.

The equation in (9) predicts quite well the filter perfor-

mances up to a moderate bandwidth, except for the cases

of narrow-band filters designed at the higher waveguide

frequency range. In those filters, wide metal strips are

placed relatively close to each other. Therefore, the higher

order mode coupling between the strips and the inaccurate

approximation of the wide strips by lumped inductors

result in a considerable downward shift in the center

frequency and a reduction in the passband bandwidth.

Although no better model has been proposed that can fully

take into account these problems, we suggest the use of a

thicker metal strip for narrow-band design at higher fre-

quencies to reduce these effects.
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